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Bragg solitons and the nonlinear Schrdinger equation
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We develop explicitly the description of low-intensity Bragg solitons by the nonlinear Siclyer equation.
In contrast to earlier studies, this result is established for arbitrary soliton velocities. This result applies directly
to grating solitons that have been observed in the laborat8t063-651X98)11212-4

PACS numbeps): 42.65.Tg, 42.65.Sf, 42.70.Qs

. INTRODUCTION AND BACKGROUND shall refer to solutions witl#<1 aslow-intensityBragg soli-

. ] ) ] ] _ tons. We note that for grating solitons that have been ob-
Solitons in uniform optical fibers are understood as arisseryed in the laboratory by Eggletat al, §~0.10[9], so
ing from a balancing of the quadratic fiber dispersion and thgnhat these have a low intensity by this definition, even though
Kerr nonlinearity of the glasil,2]. Such solitons are usually it exceeds 10 GW/ch
described theoretically by the nonlinear Salinger equa- The dispersion relation of the linearized CMEs was dis-
tion (NLSE), in which terms associated with dispersion andcyssed beford5]. Briefly, the photonic bands can be de-

nonlinearity explicitly appear. The NLSE has been studiedscriped using the relative group velocityas a fraction ofv/
extensively and many of its properties, such as integrabilitynence— 1<y <1). In terms ofv

and the robustness of its solutidrdd, can be applied to fiber
solitons. Q.=*xVky, Q=kvv, ()]

It was shown more recentlj4—11] that Bragg solitons
can exist in fiber Bragg gratings. In these solitons, which camwhere y=1/J/1—v? and Q and Q are the frequency and
propagate at any velocity between 0 andhe speed of light wave number with respect to the Bragg resonance, respec-
in unprocessed fibei5—7], the glass nonlinearity balances tively. According to Eqs(2), Q%/V?+ Q2= k2, which is the
the grating dispersion. Nonetheless, pulse propagation in fivay the dispersion relation is usually written. The associated
ber gratings is governed by a set of nonlinear coupled modknear eigenstates, indicated py ), are also well know5].
equationg CMEs), not by the NLSH5-7]. The relation be-
tween the NLSE and the more general CME description, Il. MULTIPLE-SCALE ANALYSIS
which was discussed earli¢l2,13, is important. If it is
established that the NLSE applies in some limit, then its The NLSE is derived from the CME$1) using the
properties apply to Bragg solitons. This was established exmethod of multiple scalgl2,13. The key to this analysis is
plicitly only for low-velocity and low-intensity solitongl2].  the introduction of coordinates describing phenomena occur-
However, the Bragg solitons that are most easily generateting at different length and time scales throud?] z=z,
in the laboratory travel at 60—80% &f and for these soli- +uz;+ w?z,+ - - -, wherezis position, and similarly for the
tons, observed by Eggletat al.[9,10], the existing work is  time t. Since u<1, z,, andty describe phenomena on the
insufficient. Here we rectify this and show explicitly that the shortest length and time scales. Longer length and time
NLSE applies in the low-intensity limit, but fanyvelocity. ~ scales are described ly,t; andz,,t,. Henceforth all these

Bragg solitons are described by the CMBs7] parameters are considered independent of each other.
To describe solutions to Eg&l) with a center frequency
i JE. | JE. larger than the Bragg frequency of the gratitigis includes
il Tr 2 2 —
V ot Ty, TrEst(NEL*+2I«[E<[DE-=0, () |ow-intensity grating solitons in a medium with positive non-

linearity), we write theE.. as[12]
whereE.. are the amplitudes of the forward and backward p(02g—Vig)
propagating modesy is the group velocity in unprocessed E=p(al+)+ub|—))e vz Vi), ()
fiber, k is a coupling coefficient describing the gratin o
. Ping g g g where E indicates the vector E, ,E_). Further, a

strength, and’s . are, respectively, self- and cross-phase™ _ db=b _ owl H
modulation parameters. Expressions for these parameters aref(21:22:11,t2) andb=b(z;.2,:t,t;) vary slowly on the
known [5], but are not given here. scale of() andQ since they do not depend ag or t,.

Among the known solutions to Eqg€l) are those of The ansatZ3) is now substituted into Eqg1) and con-

Aceves and Wabnitg7], who found a two-parameter family tributions at increasing higher order gf are collected. To

of pulselike solutions. Their solutions are considered thePrderu it is found that(3) satisfies Eq(2). To orderu [12]
most general description of Bragg solitons and have two free s i sa
parameters)y is the soliton’s velocity in units oV and & —=0, b=—s——, (4)
represents its amplitude and center frequency. Below we a7y 2ky” 94y
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where we introduced

{1=21—vVty, 5

Thus, to this ordera travels at the group velocity following
from Eq. (2).
Taking the procedure to ordes?, it is found that

letl'

iaa+iab+1r+r 2)|al?a=0 6

V (97_2 yagl 2( + -U )|a| a= ’ ( )

~da o (9b+i'y ﬁb+vr 24020 -

Y9, " TN an 2 -laj*a=0, (@)
where{, and 7, were defined similarly to Eqg5) and

I.=I'sx2l'y. (8)
From Egs.(6) and(4) we find thata obeys the NLSE

da Q" é%a o 1o
(T +T_v?lal’a=0, (9

o, 2 9l 2

where the quadratic dispersiad”=V/xy® can be found
from Egs.(2) with the positive sign. The resul®) was ob-
tained earlier in Refd.12] and[13].

We now combine Eq97) and(4) to find that

da v da v )
=I'_|al?a=0.

IO”_§2_K_’)/£§+2 (10)

This equation was not noted before and is the key to thi

paper. It gives the dependence of envelope fundiion the
longest length scaleZ§) [note that the NLSE9) does not
depend ong,]. Whenv =0, a does not depend ofi, and

Eqg. (10) is thus irrelevant, so that its absence was not note

earlier[12,13.
Now any solution to the NLSH9) leads, via Eq(10), to
an approximate solution to CME#$) with spectral content at

a frequency above the Bragg frequency of the grating. How-
ever, to illustrate the application of our results, we consider
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Though Eq(13) is an exact solution to the NLS@), for the
construction of approximate solutions to Eq$) we must
considerv to be small. Below, therefore, we drop terms of
order »® and higher.

To obtaina, we require Eq.(10). Using Eq.(13) it is
straightforward to show that

2l'w
I'++UZF,

a=z~iexr{(ikyvé’2)v }, (15

where terms of order® and higher were dropped. Note that
this phase factor originates from relati¢h0) and does not
follow directly from earlier work{12,13. It corresponds to a
similar factor in the Aceves-Wabnitz soluti¢#]. Using Eq.
(4) one can also show that
iv
b= 2—ytan|’(KV‘y§1)a, (16)

so that, according to E@3),

a | (1+v)Yq1+ivtanveysy)/2]

— ivvtanvky,)/2

B ﬁ —(1-v)Yq1-ivtanH viy{q)/2]
17

The solution(17) is identical to the exact solutions of
Aceves and Wabnitg7] if we identify 6 andV), respectively,
with » andv and when terms of ordes® and higher are
ignored. This shows that, using the E40), we can con-
struct solutions to the CME§1) from NLSE (9). Though
here we illustrated this with the NLSE’s one-soliton solution,

e stress that any solution to the NLEH, for example, any
w soluton, or any periodic solution leads to an approximate
solution to CMES(1).

IIl. DISCUSSION AND CONCLUSIONS

Thus we have tightened a loose end in the literature: Gen-

the specific example of the one-soliton solution of the NLSEeraIizing earlier work, we show explicitly how a solution of

In our notation it reads

~ 2ky? G273
— ToKY>I2 3
a C\/—Wv e secliCkvy°{y), (11

whereC is a free parameter. We have usetb indicate that
the £, dependence through E@L0) has not yet been in-
cluded. Equatiori11) contains two free paramete@sanduv.
We now define

v=Cy (12

Note that wherv — 0, the parameters andC are identical.
Equation(11) can now be written as

~ [ky .
a=av F—ye' vronl(2y) seclivkyly),

X

13

where

the CMEs may be found from a solution of the NLSE. We
use this to show that in the low-intensity limit though for any
soliton velocity, the solutions of Aceves and WabiitZ can

be constructed from one-soliton solutions of the NLSE. We
note that for the grating solitons observed experimentally by
Eggletonet al, 6~0.10, so that, according to our definition,
they have low intensity. They propagate at roughly 75% of
the speed of light in unprocessed fif&. They are thus
precisely the class of solitons to which the results derived
here apply. We note further that E¢L2) shows that the
standard parametrization of the NLSE is not appropriate for
grating solitons. One must make use of EL) to relate the
solutions to these two equations.

The key result is Eq10), which leads to the phase factor
(15). It formally justifies the simple intuitive description of
low-intensity Bragg solitons in terms of the balancing of the
quadratic grating dispersion and the fiber nonlinearity. It also
establishes that, within the limits discussed, NLSE properties
such as soliton robustness may be applied to Bragg solitons.
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