
PHYSICAL REVIEW E JANUARY 1999VOLUME 59, NUMBER 1
Bragg solitons and the nonlinear Schro¨dinger equation
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We develop explicitly the description of low-intensity Bragg solitons by the nonlinear Schro¨dinger equation.
In contrast to earlier studies, this result is established for arbitrary soliton velocities. This result applies directly
to grating solitons that have been observed in the laboratory.@S1063-651X~98!11212-6#

PACS number~s!: 42.65.Tg, 42.65.Sf, 42.70.Qs
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I. INTRODUCTION AND BACKGROUND

Solitons in uniform optical fibers are understood as a
ing from a balancing of the quadratic fiber dispersion and
Kerr nonlinearity of the glass@1,2#. Such solitons are usuall
described theoretically by the nonlinear Schro¨dinger equa-
tion ~NLSE!, in which terms associated with dispersion a
nonlinearity explicitly appear. The NLSE has been stud
extensively and many of its properties, such as integrab
and the robustness of its solutions@3#, can be applied to fibe
solitons.

It was shown more recently@4–11# that Bragg solitons
can exist in fiber Bragg gratings. In these solitons, which
propagate at any velocity between 0 andV, the speed of light
in unprocessed fiber@5–7#, the glass nonlinearity balance
the grating dispersion. Nonetheless, pulse propagation i
ber gratings is governed by a set of nonlinear coupled m
equations~CMEs!, not by the NLSE@5–7#. The relation be-
tween the NLSE and the more general CME descripti
which was discussed earlier@12,13#, is important. If it is
established that the NLSE applies in some limit, then
properties apply to Bragg solitons. This was established
plicitly only for low-velocity and low-intensity solitons@12#.
However, the Bragg solitons that are most easily genera
in the laboratory travel at 60–80% ofV and for these soli-
tons, observed by Eggletonet al. @9,10#, the existing work is
insufficient. Here we rectify this and show explicitly that th
NLSE applies in the low-intensity limit, but foranyvelocity.

Bragg solitons are described by the CMEs@5,7#
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whereE6 are the amplitudes of the forward and backwa
propagating modes,V is the group velocity in unprocesse
fiber, k is a coupling coefficient describing the gratin
strength, andGS,3 are, respectively, self- and cross-pha
modulation parameters. Expressions for these parameter
known @5#, but are not given here.

Among the known solutions to Eqs.~1! are those of
Aceves and Wabnitz@7#, who found a two-parameter famil
of pulselike solutions. Their solutions are considered
most general description of Bragg solitons and have two
parameters:V is the soliton’s velocity in units ofV and d
represents its amplitude and center frequency. Below
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shall refer to solutions withd!1 aslow-intensityBragg soli-
tons. We note that for grating solitons that have been
served in the laboratory by Eggletonet al., d'0.10 @9#, so
that these have a low intensity by this definition, even thou
it exceeds 10 GW/cm2.

The dispersion relation of the linearized CMEs was d
cussed before@5#. Briefly, the photonic bands can be d
scribed using the relative group velocityv as a fraction ofV
~hence21,v,1). In terms ofv,

V656Vkg, Q5kgv, ~2!

where g51/A12v2 and V and Q are the frequency and
wave number with respect to the Bragg resonance, res
tively. According to Eqs.~2!, V2/V21Q25k2, which is the
way the dispersion relation is usually written. The associa
linear eigenstates, indicated byu6&, are also well known@5#.

II. MULTIPLE-SCALE ANALYSIS

The NLSE is derived from the CMEs~1! using the
method of multiple scales@12,13#. The key to this analysis is
the introduction of coordinates describing phenomena oc
ring at different length and time scales through@12# z5z0
1mz11m2z21•••, wherez is position, and similarly for the
time t. Sincem!1, z0 , and t0 describe phenomena on th
shortest length and time scales. Longer length and t
scales are described byz1 ,t1 andz2 ,t2 . Henceforth all these
parameters are considered independent of each other.

To describe solutions to Eqs.~1! with a center frequency
larger than the Bragg frequency of the grating~this includes
low-intensity grating solitons in a medium with positive no
linearity!, we write theE6 as @12#

E5m~au1&1mbu2&)eikg~vz02Vt0!, ~3!

where E indicates the vector (E1 ,E2). Further, a
5a(z1 ,z2 ;t1 ,t2) andb5b(z1 ,z2 ;t1 ,t2) vary slowly on the
scale ofV andQ since they do not depend onz0 or t0 .

The ansatz~3! is now substituted into Eqs.~1! and con-
tributions at increasing higher order ofm are collected. To
orderm0 it is found that~3! satisfies Eq.~2!. To orderm @12#
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where we introduced

z15z12vVt1 , t15t1 . ~5!

Thus, to this order,a travels at the group velocity following
from Eq. ~2!.

Taking the procedure to orderm2, it is found that
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G2uau2a50, ~7!

wherez2 andt2 were defined similarly to Eqs.~5! and

G65GS62G3 . ~8!

From Eqs.~6! and ~4! we find thata obeys the NLSE
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~G11G2v2!uau2a50, ~9!

where the quadratic dispersionV95V/kg3 can be found
from Eqs.~2! with the positive sign. The result~9! was ob-
tained earlier in Refs.@12# and @13#.

We now combine Eqs.~7! and ~4! to find that
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G2uau2a50. ~10!

This equation was not noted before and is the key to
paper. It gives the dependence of envelope functiona on the
longest length scale (z2) @note that the NLSE~9! does not
depend onz2]. When v50, a does not depend onz2 and
Eq. ~10! is thus irrelevant, so that its absence was not no
earlier @12,13#.

Now any solution to the NLSE~9! leads, via Eq.~10!, to
an approximate solution to CMEs~1! with spectral content a
a frequency above the Bragg frequency of the grating. Ho
ever, to illustrate the application of our results, we consi
the specific example of the one-soliton solution of the NLS
In our notation it reads

ã5CA 2kg3

G11G2v2eiC2t2kg3/2 sech~Ckg3z1!, ~11!

whereC is a free parameter. We have usedã to indicate that
the z2 dependence through Eq.~10! has not yet been in
cluded. Equation~11! contains two free parametersC andv.
We now define

n5Cg2. ~12!

Note that whenv→0, the parametersn andC are identical.
Equation~11! can now be written as

ã5anAkg

G3
ein2t2k/~2g! sech~nkgz1!, ~13!

where
is

d

-
r
.

a22511
Gs

2G3

11v2

12v2 . ~14!

Though Eq.~13! is an exact solution to the NLSE~9!, for the
construction of approximate solutions to Eqs.~1! we must
considern to be small. Below, therefore, we drop terms
ordern3 and higher.

To obtain a, we require Eq.~10!. Using Eq. ~13! it is
straightforward to show that

a5ã expF ~ ikgnz2!nS 2Gsv
G11v2G2

D G , ~15!

where terms of ordern3 and higher were dropped. Note th
this phase factor originates from relation~10! and does not
follow directly from earlier work@12,13#. It corresponds to a
similar factor in the Aceves-Wabnitz solution@7#. Using Eq.
~4! one can also show that

b5
in

2g
tanh~kngz1!a, ~16!

so that, according to Eq.~3!,

E5
a

A2
S ~11v !1/2@11 intanh~nkgz1!/2#

2~12v !1/2@12 intanh~nkgz1!/2#
D eivntanh~nkgz1!/2.

~17!

The solution~17! is identical to the exact solutions o
Aceves and Wabnitz@7# if we identify d andV, respectively,
with n and v and when terms of orderd3 and higher are
ignored. This shows that, using the Eq.~10!, we can con-
struct solutions to the CMEs~1! from NLSE ~9!. Though
here we illustrated this with the NLSE’s one-soliton solutio
we stress that any solution to the NLSE~9!, for example, any
cw soluton, or any periodic solution leads to an approxim
solution to CMEs~1!.

III. DISCUSSION AND CONCLUSIONS

Thus we have tightened a loose end in the literature: G
eralizing earlier work, we show explicitly how a solution o
the CMEs may be found from a solution of the NLSE. W
use this to show that in the low-intensity limit though for an
soliton velocity, the solutions of Aceves and Wabnitz@7# can
be constructed from one-soliton solutions of the NLSE. W
note that for the grating solitons observed experimentally
Eggletonet al., d'0.10, so that, according to our definition
they have low intensity. They propagate at roughly 75%
the speed of light in unprocessed fiber@9#. They are thus
precisely the class of solitons to which the results deriv
here apply. We note further that Eq.~12! shows that the
standard parametrization of the NLSE is not appropriate
grating solitons. One must make use of Eq.~12! to relate the
solutions to these two equations.

The key result is Eq.~10!, which leads to the phase facto
~15!. It formally justifies the simple intuitive description o
low-intensity Bragg solitons in terms of the balancing of t
quadratic grating dispersion and the fiber nonlinearity. It a
establishes that, within the limits discussed, NLSE proper
such as soliton robustness may be applied to Bragg solit
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